A simplicity principle in unsupervised human categorization

نویسندگان

  • Emmanuel M. Pothos
  • Nick Chater
چکیده

We address the problem of predicting how people will spontaneously divide into groups a set of novel items. This is a process akin to perceptual organization. We therefore employ the simplicity principle from perceptual organization to propose a simplicity model of unconstrained spontaneous grouping. The simplicity model predicts that people would prefer the categories for a set of novel items that provide the simplest encoding of these items. Classification predictions are derived from the model without information either about the number of categories sought or information about the distributional properties of the objects to be classified. These features of the simplicity model distinguish it from other models in unsupervised categorization (where, for example, the number of categories sought is determined via a free parameter), and we discuss how these computational differences are related to differences in modeling objectives. The predictions of the simplicity model are validated in four experiments. We also discuss the significance of simplicity in cognitive modeling more generally. © 2002 Cognitive Science Society, Inc. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Predicting category intuitiveness with the rational model, the simplicity model, and the generalized context model.

Naïve observers typically perceive some groupings for a set of stimuli as more intuitive than others. The problem of predicting category intuitiveness has been historically considered the remit of models of unsupervised categorization. In contrast, this article develops a measure of category intuitiveness from one of the most widely supported models of supervised categorization, the generalized...

متن کامل

Modeling Category Intuitiveness

We asked 169 participants to spontaneously categorize nine sets of items. A category structure was assumed to be more intuitive if a large number of participants consistently produced the same classification. Our results provide a rich empirical framework for examining models of unsupervised categorization—and illustrate a corresponding profound modeling challenge. We provide a preliminary exam...

متن کامل

One or two dimensions in spontaneous classification: a simplicity approach.

When participants are asked to spontaneously categorize a set of items, they typically produce unidimensional classifications, i.e., categorize the items on the basis of only one of their dimensions of variation. We examine whether it is possible to predict unidimensional vs. two-dimensional classification on the basis of the abstract stimulus structure, by employing Pothos and Chater's simplic...

متن کامل

Unsupervised Categorization in a sample of children with autism spectrum disorders.

Studies of supervised Categorization have demonstrated limited Categorization performance in participants with autism spectrum disorders (ASD), however little research has been conducted regarding unsupervised Categorization in this population. This study explored unsupervised Categorization using two stimulus sets that differed in their difficulty of Categorization according to the simplicity ...

متن کامل

A Nonlinear Grayscale Morphological and Unsupervised method for Human Facial Synthesis Based on an Example Image

Human facial generation of example image is used as a requirement for biometric applications for the purpose of identifying individuals. In this paper, face generation consists of three main steps. In the first step, detection of significant lines and edges of the example image are carried out using nonlinear grayscale morphology. Then, hair areas are identified from the face of sample. The fin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cognitive Science

دوره 26  شماره 

صفحات  -

تاریخ انتشار 2002